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ABSTRACT

The algorithms for volume grid generation using NURBS geometric representation are presented.
The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and
volume. This approach bridges the gap between CAD surface / volume definition and surface / volume grid
generation. Computational examples associated with practical configurations have shown the utilization of
these algorithms.

INTRODUCTION

Surface grid generation is the most labor intensive part of the overall complex three dimensional grid
generation process. Also, a significant amount of effort is required in changing the resolutions (grid sizes)
and / or the distribution of the grid while maintaining geometry fidelity. In the last few years, various re-
searchers have concentrated on utilizing the Computer Aided Geometry Design (CAGD) techniques [Ref
2,13,14] to expedite the overall surface generation process.

There are many approaches for representing sculptured geometry, such as rational or non-rational
Bezier, parametric form, rational or non-rational B-spines, ... ,etc. Among these representation, the Non-
Uniform Rational B-Splines (NURBS) has been widely accepted among these researchers. NURBS has
been widely utilized to represent and design geometry in the CAD/CAM and the graphics community due
to its powerful features, such as the local control property, variation diminishing, convex hull and affine in-
variance [Ref 1,2]. Also the geometry tool kits, such as curve/surface interpolation, data reduction, degree
elevation, knot insertion and splitting, are well-developed [Ref 2,3,4]. These properties have made NURBS
representation very popular in recent developments in CAD/CAM and hence in grid generation. For exam-
ple, in 1992, the scientists of NAS A research centers formed a NASA IGES (Initial Graphic Exchange Speci-
fication) committee and defined a format named NINO (NASA IGES NURBS ONLY) standard to encour-
age the CFD community to follow this standard with the NURBS definition for the geometry
communication between systems [Ref 5].

The development of the software based on NURBS representation package: CAGI (Computer Aided
Grid Interface) was initiated by authors [Ref 15] under the sponsorship of NAS A Marshall Space Flight Cen-
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ter. The purpose of this paper is to present the progress realized in enhancing the NURBS based curve /
surface grid generation techniques into a 3D volume grid generation technique. To this end, various options
for generating 3D volume geometry-grid are discussed. A reparameterization scheme has been developed
to achieve desired distribution in physical space. Computational examples for modeling practical configu-
rations have been exercised using the volume options and the reparameterization scheme.

NURBS FORMULATION

Detailed mathematical discussion on NURBS can be found in [Ref 2,3,4]. A brief definition of
NURBS curve / surface / volume is presented as follows:

A NURBS Curve of order k is defined as :
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where the d; i=0,..,n denotes the deBoor control polygon and the W; are the weights associated with each
control point. N f (1) is the normalized B-spline basis function of order & and is defined over a knot vector
T=T; i=0,..,n+k by the recurrence relations as shown in equation (2).
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Throughout this paper, it is assumed that the knot vector has the form 7= {0, ...,0.T}, ..., T, 1, ..., 1} with
the multiplicity k for the knot value 0 and / on both ends of the knot vector. If the knot vectors do not match
this format, the knot insertion [Ref 6,7] technique must be used to achieve the multiplicity of k£ on the ends
of the knot vector, and if the end knot values are not 0 and 1, the knot vector must be normalized by the last
knot value to match this format.

The NURBS surface is the extension of the curve from 1D to the 2D tensor product parametric surface and
is shown as equation (3).
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Where the d; j denotes the 3D control net and the W;; are the weights associated with each control points.
N¥(s), N}&(t) denote the normalized B-Spline basis functions of order kI and k2 in the / and J directions,
respectively.

The formula for 3D NURBS volume is defined analogous to NURBS surface and is a 3D tensor product form
written as equation (4).
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The djj form the 3D control volume and the W are the weights associated with each control points. And
N{'(s), N;*(#) and N*(u) are the normalized B-spline basis functions of order k/, k2 and k3 in the /, J and
L directions (Instead of using /, J, K, this paper uses /, J, L to denote the three directions), respectively.

3D NURBS CONTROL SURFACE

NURBS has been used to model geometry in CAD/CAM for a long time. Manipulation tools such
as “knot insertion” and ‘‘degree elevation” are used to increase the flexibility of manipulating the entire
geometry. The famous algorithms for knot insertion are *Boehm” algorithm [Ref 6] and “Oslo’ algorithm
[Ref 7]. Both knot insertion and degree elevation are fundamental and powerful tools and are very frequent-
ly used in modeling the NURBS geometry. The curve and surface interpolation [Ref 8,11] techniques are
also used to transform the discrete geometry to B-spline definition. These algorithms have been used as
basic tools in modeling the NURBS geometry. Also, it has been shown [Ref 8,9] that many geometries can
be represented analytically with a very concise control polygon (control net). For example, a NURBS circu-
lar arc can be defined with only 3 control points. Instead of storing the surface grid points, one can store the
associated control polygon (control net or volume for the surface and the volume) with the associated
weights to reduce the memory load, and this has been considered as one of the features of the NURBS repre-
sentation.

The algorithms to construct NURBS representation for ruled surface, extruded surface, surface of rev-
olution ....etc. along with analytical geometries with appropriate data reduction algorithm are well devel-
oped and well documented in the CAGD literature. These algorithms have been enhanced and incorporated
in the CAGI system [Ref 15]. The application of these algorithms to practical CFD related grid configura-
tions is demonstrated in Figures 1~4. Figure 1 shows four NURBS control patches and their surfaces. This
multiple-duct engine is created first by reading the curve profiles, interpolating these discrete data set to
NURBS curves, then performing the data reduction [Ref 10] to reduce the redundant control points, and then
finally, by using the NURBS revolution [Ref 3,4,13] algorithm. Similar procedures applied to create the
single rotation propfan shown in Figure 4. The teapot shown in Figure 2 is modeled by three NURBS control
nets, while the missile configuration with four fins shown in Figure 3 is generated by the eight control nets.

3D NURBS CONTROL VOLUME

The widely used technique to algebraically generate the three dimensional volume grid is by utilizing
the transfinite interpolation algorithm based on the bounding surface grids. The ultimate objective of the
present research effort is to explore various NURBS control volume options applicable to three dimensional
grid generation. In this paper progress realized in the development of ruled NURBS volume, extruded vol-
ume, volume of revolution and composite volume are discussed.

Ruled NURBS volume.

The easiest way to form a 3D NURBS volume is the ruled NURBS volume. The algorithm is de-
scribed as followed: Given two NURBS surfaces, the first step to form a ruled volume is making the knot
vectors of the surfaces be in the same range of {0~1]. Next, considering the / direction of both surfaces, use
the degree raising technique to raise the low degree of the surface. This procedure will yield a new knot
vector and new control net. If the new knot vector differs from the other knot vector, then perform knot
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insertion algorithm to merge them into one final knot vector. Then these entire procedures must be applied
to the J direction of both surfaces again. After this step, the two NURBS surface will have the same orders
and the same knot vectors in both 7 and J directions. This means the resolutions of control net of both sur-
faces will be the same. Therefore, one can connect the corresponding control point together to form the 3D
NURBS volume. In other words, the orders and knot vectors of the final volume in I and J directions will
be the same as those of the surfaces after degree elevation and knot insertion, and the order in L direction
will be set as two with knot vector set as (0,0,1,1). Figure 5 shows a 3D “apple-like” NURBS volume
formed by this algorithm.

While defining the NURBS ruled surface, the IGES defines a variable named “DIRFLG” as a direc-
tion flag to control the direction of how the surface will be connected. If DIRFLG is 0, then the surface will
connect the points on the same direction of the two curves, otherwise, the direction of one of the curves will
be reversed. Similar to this definition, it is possible to set two flags as “DIRFLG I’ and “DIRFLG _J” to
control how the directions of the two surfaces will be connected. This increases the flexibility of generation
options.

Extruded volume.

IGES defines the extruded surface as a surface formed by moving a line segment (called generatrix)
parallel to itself along a curve(called directrix). In other words, given a NURBS curve, one can generate
another curve by extruding the given curve with a distance o along a vector V. Similar to this definition, the
NURBS extruded volume is defined as: given a NURBS surface, a new surface can be generated by extrud-
ing the given surface with a distance a along a vector V. Mathematically, this new extruded surface can be
describedas d;; = d;; + aV with the same orders, same knot vectors as those of the given surface. After this

step, the algorithm of ““ruled volume” can be applied to these surfaces to form a final NURBS volume. Fig-
ure 6 shows a 3D NURBS extruded volume.
Yolume of revolution.

IGES also defines the surface of revolution entity as the surface which is formed by rotating a given
curve (called generatrix) with respect to an arbitrary straight line (axis of revolution) from a starting angle
( not necessarily zero) to an ending angle. Compared to most of the literature which discussed the full revo-
lution (rotation angle is set to 3600), this definition is more general and useful in grid generation. The
NURBS volume of revolution discussed in this paper is the extension of the surface of revolution, and it is
formed by rotating a given NURBS surface with respect to an arbitrary line as the axis of revolution from
a starting angle to an ending angle. This general algorithm can be stated as follows: First step is translating
/ rotating the axis of revolution by proper transformation matrix so that it is coincident with the Z axis. Also,
apply this transformation matrix to the given NURBS surface so that the entire surface can be kept in the
same position as the axis of rotation. It is assumed that the surface is defined as NURBS with the control
net djj, order kI and k2, weights W;; and two knot vectors. Next, for each control net dj (on the generatrix
i= 0,...m, j= 0,..,n), construct the control volume d;; /=0 .. p at each j-th cross section according to the
starting and ending angle by utilizing the circular arc algorithm. In other word, this approach constructs the
NURBS control net at each j constant plane by revolving the control polygon dj; with respect to L direction
and then ““stacks” them together to form a final NURBS volume. Figure 7 demonstrates this approach. The
procedure for generating the NURBS circular arc can be referenced in [Ref 9,13] and the p (for the last di-
mension of control volume) is determined by the sector angle (equal to the difference between ending and
starting angle). For example, if the angle is less than 909, p is equal to 2. If the angle is in the range of 900
~1800, p is equal to 4, if in the range of 180°~2700, p is 6, if it is greater than 270%, p should be 8. For the
section angle 6, the weights are set as (in each J constant plane, J/=0,..n) Wy, = wy, wy cos(6/p), wy,
wiscos(®lp) ,... i=0,..,m ( repeat wis, wircos(0/p) with total p+1 terms). The knot vectors in directions of /
(s) and J (1) are the same as the ones of the given surface while the knot vector in direction L («) is determined
according to the circular arc procedure. For example, when p = 2, the associated knot vector is set as
(0,0,0,1,1,1), for the case of p = 4, the knot vector is set as (0,0, 0, 1/2, 1/2, 1, 1, 1), for the case of p = 6,
the knot vector is set as (0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1,1,1) and the last case when p = 8, the knot vector is (0,
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0,0,.25,.25,.5,.5.75,.75 ,1,1,1). Also, set the orders in / and J be kI and 2 (as the ones in original
surface) while set 3 as the order in L direction. Since the NURBS has the translate and rotate invariant prop-
erty, one can apply the inverse transformation matrix to the control volume (without altering the weights and
knot vectors) back to the original coordinates. Figure 8 shows a 3D NURBS control volume developed by
this approach.

Several complex circular pipes can be constructed by using the combination of the aforementioned
approaches. Figure 9 (a) and (b) are formed by first building a NURBS surface, then extruding it with a
desired distance to form a cylinder pipe, extracting the last cross sectional surface from this cylinder pipe and
then performing the volume of revolution algorithm to create those turning portions, and again extracting the
last cross sectional surface and using the ruled surface algorithm to form the last pipe. Last, the composite
method should be performed to construct the entire volume pipe.

Composite volume.

A composite NURBS volume is defined as a volume consisting of lists of constituent volumes. The
compositing procedure is stated as follows: Suppose two constituent NURBS volume V; and V> form a com-
posite volume. Assume that V; has control volume d; [0:my, 0:ny, 0:1;], weight W;[0.m;, 0:ny, 0:1;], three
knot vectors knot_i);, knot_j);, knot_1); and orders k_i);, k_j);, k_I); while V> has control volume & [0:mp,
0:nz,0:5], weight W>[0:my, 0:nz, 0:1], three knot vectors knot_i)y, knot_j), knot_l); and orders k_iy, k_j),
k_D,. There are many combinations when two volumes are joined together. For example, one may join the
volumes in / direction with the interface of J, L surface, or join in L direction with the interface of /, J surface,
.. etc. Even though there are many cases, the procedure is similar. Take the case when joining in / direction
as an example, the first step is to perform the degree elevation to V; and V> so that these two volumes can
have the compatible degrees in /, / and L directions. If the two knot vectors in J direction for V; and V; are
not the same, merging them together by setting the final knot vector as { knot_j); U knot_j), }, then applying
the knot insertion to V; and V in J dimension. Same procedure should be applied to L direction if knot 1),
and knot_1); are not the same. After this step, V; and V, will have the same degree in three directions, and
the number of control points and knot vectors in J and L directions will be the same. The second step is to
adjust the knot vector knot_i); so that its first knot value can be the same as the last knot value knot i);.
Shifting the knot vector will not change the original NURBS because the basis function is a “‘normalized”
basis function. The third step is to build up the final knot vector by joining the two knot vectors into one
knot vector and set that knot value at the joint point to have the multiplicity equal to (order -1). For example,
if the knot vector knot_i); is [0, 0, 0, 1, 1, 1] and the knot vector knot i), is [2,2,2,3,3,3], adjust the second
knot vector by shifting -1 to each value. Thus, the knot_i); becomes [1,1,1,2,2,2]. Suppose the final order
of these two volumes in / direction is three, then, the final knot vector should be [0,0,0,1,1,2,2,2] (one may
notice the interior knot 1 has multiplicity of (order-1)=2). The fourth step is to match the weights. This step
can be illustrated as the following pseudo code.

for (L=0; L<=l;; L++)
for (j=0; j<=n;; j++)

let factor = Wy [my, j, L] I Wr{0,j, L] ;

for (i=0; i<=mp; ++)
Wali, j, L] = Wh(i, j, L] *factor ;

The last step is to build up the final control volume and weights by throwing the d>[0:0, 0:np, 0:1] and
W2[0:0, 0:n;, 0:5] away and jointing the others as one control volume and weights.

REPARAMETERIZATION PROCEDURE

As discussed earlier, it is clear that the NURBS representation is defined in a parametric form. Take
a curve as an example: any value ¢ in parametric space will result in a point C(#) in the physical space. This
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property leads to some advantages and disadvantages. In perspective of numerical grid generation, the most
conspicuous contributions for NURBS are that it provides a very easy and intuitive way for changing topolo-
gies, resolutions and the distributions of a surface grid. The surface grids generated in grid generation tools
often have different topologies - such as O type, C type and H type grid or even unstructured or hybrid grid.
Generating a 3D surface from these different topologies may require repeated applications. However, by
using the 3D NURBS control polygon and weights the re-mapping and redistribution can be achieved by
re-establishing the associated distribution mesh (network of parameiric values). Figure 10~11 demonstrate
the examples of the redistribution process. In these example, the structured and unstructured (hybrid) grid
is generated just by constructing the associated hybrid distribution space. The other advantages are dealt
with the resolution and distribution. Due to this parametric property, evaluating the same NURBS informa-
tion (same control points, weights, knot vector and the same orders) with different parametric mesh (includes
the different dimension of grid sizes) can yield a surface grid redistribution. This is accomplished by the
“reparameterization” procedure.

What makes NURBS so popular in CAD design is that it provides many stable geometry manipulating
properties. One of those properties is the local control property. The engineer can locally modify the
NURBS geometry by changing the NURBS information (such as the location of the control polygon,weights
or even knot vectors) without perturbing the entire geometry. However, this reshaping also changes the ef-
fect of parametric space on the distribution of points, often resulting in unacceptable distribution. This is
due to “bad parameterization”-- which means after changing any of the NURBS information (control poly-
gon, knot vectors or weights), the desired distribution in parametric space will not necessarily result in the
desired distribution in physical space (take equation (1) as an example, the evenly distribution in ¢ (paramet-
ric space) doesn’t result in evenly distribution in C(¢) (physical space)). These situations are demonstrated
in Figure 12. The curve itself has been locally modified, yet one can also notice that the points on the modi-
fied curve are stretched towards the control point for which the weight has been increased. This has been
claimed as the disadvantage of the parametric NURBS. Several literatures [Ref 13,14] have shown their
approaches to overcome this obstacle and to obtain the desired distribution in the final geometry after any
modification. A new and more efficient algorithm for reparameterizating parametric curve has been devel-
oped as follows:

Consider a NURBS curve with resolution si. Let

(1) #(i), i=1,..,ni be the unknown distribution which is used to generate the desired curve in physical space;
(2) (i), i=1,..,ni be the normalized chord length of the curve with desired distribution; and

(3) 13(i), i=1,..,ni be the normalized chord length of the curve evaluated at parametric values (i), i=1,.., ni.

Take Figure 12 as an example, if the designer would like to have the final curve as shown in Figure 12(c),
then 5(i) will be a 1D array which contains the distribution packing towards two ends, and # (i) are the para-
metric values which are to be determined such that the #(i), the normalized chord length of final curve,
would be the same as #(i) (or le(i) - 13(i)l be minimized for all i=1,.., ni).

In order to obtain #3(i), the initial values of # (i) must be initialized. One can set #; (i) as evenly distributed
initially, then evaluate the curve with these parametric values to obtain the final curve, then normalize the
entire chord length to obtain #3(i). Generally, the #3(i) will be different than #,(i). How to adjust #;(i) to have
new #3(i) which is close to ,(i)? The entire reparameterization procedure is described in the following com-
puter pseudo code:

for (i=1; i<(ni-1); i++)
find the location of j such that [j]1 < n[i] < r3[j+1].
let o=t{i-51); B=t:lj+11- nlil;
tli=(t, [+ 11*a + 1j1*B) / (o + B);
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The final #[i] will be the desired distribution curve, and using this distribution to evaluate the NURBS curve
shown in Figure 12(b) (with the middle weight increased) will yield the result shown in Figure 12(c), which
has the distribution packing towards two ends.

This reparameterization algorithm can also be extended to find the desired distribution mesh for the
tensor product NURBS surface. The reasons which lead to the bad parameterization problems for the surface
may come from arbitrarily modifying the NURBS information (such as the control point, weights or knot
vector), or from significant difference of the arc lengths of two opposite boundaries. These cases are dem-
onstrated in Figure 13 and 14. From equation (3), one can understand what cause the problem shown in
Figure 14. There are only two knot vectors which control the distribution in / and J directions. If both of
the two opposite boundaries in / (or J) have different distributed requirements or have big difference in arc
length, the one single knot vector in / (or J) may cause problem. Similar to the reparameterization procedure
of the curve, the algorithm for the surface is stated as followed.

Instead of defining the three 1D arrays, three sets of 2D arrays (s;, 17 ), (s2, &) and (s3, t3) must be
defined. Consider a NURBS surface with resolution ni by nj. Let

(D) (sp(ij).(iy)), i=1,..,ni, j=1,..,nj be the unknown distribution mesh which is used to generate the
desired distribution of the surface in physical space;

(2) (s2(ig).02(ij), i=1,...ni, j=1,..,nj be the normalized chord length of the surface with desired dis-
tribution; and

(3) (s3(ij).a3(i,j)), i=1,..,ni, j=1,..,nj be the normalized chord length of the surface evaluated at para-
metric values (s7(i,j), 4(ij)).
Take Figure 13 as an example. If the designer would like to have the final surface, as shown in Figure 13(c),
then (s(i,j).5(i,j)) would be a 2D array which contains the even distribution, and (s;(i,j).¢; (ij)) would be
the parametric values which are to be determined such that the (s3(i,j).13(ij)), the normalized chord length
of final surface, would be the same as (s3(i,j).-2(i,j)) or within certain tolerance.

Similar to curve algorithm, one can set (s;(i,j).t;(i,j)) as evenly distributed initially, then evaluate the surface
with these parametric values to obtain (s3(i,j).t3(i,j)). Most likely the (s3(i,j).t3(i,j)) will be different than
(s2(i,j).12(ij)). The procedure to adjust (s;(i,j).t;(ij)) so that (s3(i,j).t3(i,j)) can be close to (sy(i,j).12(ij)) is
presented with the following computer pseudo code:

for (j=1, j<(nj-1); j4++)

for (i=1; i<(ni-1); i++)

search the index of 1, J such that (sy(ij).5;(i,j)) is located within the cell of (s3(1,J), t3(1,J)),
(s3(I+1,7), 13(1+1,J)), (s3(1,J+1), 5301, J+1)), and (s3(I1+1,J+1), 5(I+1,J+1));

let (sp(i.).02(ij))= (1-o)(1-B)s3(1, J), t3(1, 7)) + (1-a)B(s3(l, J+1).03(1, J+1)) +
a(1-B)s3(I+1,J), 3(1+1,J)) + af(s3(I+1,J+1), 3(/+1,J+1)) and solve for a and B ;

new (s(ij).1(ij))= (1-a)(1-B)(s; (1, J), yy(1,J)) + (1-o)B(s; (1, J+1).4 (1, J+1)) +
a(1-B)(sy(I+1.J), y(I+1, 7)) + oB(s;(I+1,J+1), y(I+1, J+1)) ;
}
The final (s(ij),i(i,j)) are then the desired distribution mesh in which to generate the desired surface grid
shown in Figure 13(c) and 14(d).
The reparameterization algorithm for the volume case is similar. 3 sets of 3D arrays should be used,

and instead of bi-linear interpolation, the trilinear interpolation should be used while adjusting the desired
distribution.

CONCLUSIONS

The grid generation algorithm associated with the ruled volume, extruded volume, volume of revolu-
tion and the composite volume based on the NURBS representation have been presented and demonstrated
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by utilizing practical configurations. The development of the reparameterization scheme and its influence
to curve / surface / volume grid distribution is demonstrated by examples. These algorithms have been incor-
porated as modules in the CAGI system. The research associated with enhancing the volume options and
manipulations along with evaluation of the traditional transfinite interpolation algorithm based on NURBS
is underway.
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Figure 1. 3D NURBS control nets model Figure 2. A teaset modeled by 3D

the multiple-duct engine. NURBS control surfaces.

Figure 3. 3D NURBS control patches model Figure 4. 3D NURBS control patches model

the missile (with fins) geometry. the single rotation propfan.
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Figure 5. 3D NURBS control volume and its Figure 6. 3D NURBS extruded volume

volume grid for ruled volume case. and its volume grid.

rotation axis

Figure 7. Illustration of volume of revolution. Figure 8. 3D NURBS control volume models

the missile configruation.
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Figure 9 (a) (b). 3D NURBS circular pipes formed by the algorithm of

ruled volume, extruded volume and volume of revolution.

(10) (11)

Figure 10. 3D hybrid pipe. Figure 11. 3D hybrid teapot.
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(a) (b) ©

Figure 12. (a) Original NURBS curve and its control polygon.

(b) Increase the weight in the middle control point, evaluated the curve with
even distribution in parametric space.

(¢) Reparameterization example. The shape of the curve is unchanged, yet with
new distribution packing towards two ends.
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Figure 13. (a) Original NURBS surface and its control net.
(b) Alter the weights and control points location and evaluated the surface with
even distribution in parametric space.
(c) Reparameterization example. The shape of the surface is unchanged, yet with
new distribution.
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(b)

Figure 14 (a). A 3D control net models the missile configuration.

(b). 2D missile control patch for external flow simulation.
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Figure 14 (¢). 2D surface grid patch evaluated with even distribution in parametric space.

(d). Reparameterization precedure for a smooth grid.
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